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Abstract— We present a method to determine the location
of an applied pressure on a large area, monolithic silicone-
based capacitive sensor. In contrast to pressure sensor arrays
composed of n × n discrete sensors, we utilize a single sensor
body with a single instrumentation interface to detect n pixels.
We interrogate the capacitive sensor at different frequencies,
thus modulating the effective length of the sensor. These
interrogation frequencies are governed by the sensor’s total
capacitance, resistance, and desired spatial resolution of the
sensor. We developed an analytical model to calculate the
frequency response at different length segments of the sensor
and used the results to determine the interrogation frequencies
for experimental studies. We performed experimental tests
on a 1 × n sensor strip and an n × n sensor sheet and
showed that we could attain greater than 90% accuracy in
predicting the location of the applied pressure using a model
generated by a multi-class kernel support vector machine. This
approach towards distributed localization of point pressures
greatly reduces the hardware complexity in comparison to
discrete sensor arrays and increases the physical robustness
of the system.

I. INTRODUCTION

Robotic systems that interact with their surroundings need
to detect and localize the contact with an object. Pressure
sensor arrays are a well-developed technology with multi-
ple commercially available devices (TakkTiles, Sensitronics,
Tekscan, Sensing Tex, BodiTrak, SureTouch). However, the
majority of these commercial devices incorporate materials
that are stiffer or more strain-limited than those commonly
demanded by softer interfaces, hindering their integration.

Researchers have developed various approaches to
“soften” pressure sensing for soft robotics, human-computer
interactive system, and wearable applications. Two common
approaches for measuring pressure are by measuring the
resistance of a deformable, soft or fluid conductor or by
measuring the capacitance of a deformable capacitor. Some
resistive sensing approaches include the use of conductive
polymer composites [1]–[3] or embedding liquid-metal mi-
crochannels in silicone elastomer [4]–[7]. Capacitive sensing
approaches use a variety of materials for both the conductive
electrodes and the dielectric layer. Electrode materials can be
broadly classified into metal thin film [8]–[11], liquid metal
[12], [13], conductive silicone composite [14]–[17], conduc-
tive fabrics [18]–[20], hydrogels [21], carbon nanotubes [22],
and carbon grease [23], [24]. The dielectric layers have been
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Fig. 1. The soft monolithic silicone-based capacitive sensor skin deforming
into a mug. The sensor skin measures 120x120x4 mm3 with 70 pF of overall
capacitance.

composed of silicone foam [8], [9], [18], native silicone [11]–
[15], [17], [21], [22], polyurethane [10], and acrylic foam
tape [23], [24].

Though the transduction means to convert pressure to a
signal may differ, the majority of these devices utilize a
single sensor to make a single measurement of pressure.
In order to distribute sensing capability over larger areas,
researchers have patterned multiple pixels individually [5],
[8], [19], [25] over the sensing region at the desired spatial
resolution. However, as the number of sensors increases, so
does the number of interfaces to the electronics. For the
practice, the sheer number of wires can become unwieldy,
prone to breakage, increasing the stiffness of the system
and therefore, higher resolution uniform surface systems
are difficult to design and implement. One way to mitigate
this issue in scalability is to use the electrodes on the
top and bottom of the substrate in orthogonal rows and
columns to create pixels at the intersections [1], [9]–[12],
[14], [17], [20], [22]. This approach reduces the number
of interfaces for an n-by-n grid from O(n2) to O(n), a
further improvement is to leverage the frequency-dependent
characteristics of large-area capacitors to reduce the number
of interfaces to two for an n×n pixel array. Interrogating a
capacitor at multiple frequencies effectively creates multiple
sensing regions within the area of a single capacitive sensor
body [23], [24], [26]. Another interesting way to reduce the
number of electrodes for touch-sensing applications is to use



Fig. 2. Electrical equivalent circuit diagram and results of the analytical model of the 1D sensor strip. (a) Schematic of a single element in the 1D sensor
strip. A photo of the sensor cross-section of the sensor strip. (b) Model of a 1 x 3 pixel array. The interface is located on the left end; the distance or pixel
index increases from this point along the sensor. The top schematic shows a top view of the physical device; the bottom schematic shows the corresponding
electrical equivalent circuit. (c) Plots of the signal amplitude calculated at each node over a frequency sweep. The black horizontal line marks the -3dB
threshold. The interrogation frequencies are the frequencies at which the signal amplitude curves intersect the -3dB line.

electric field tomography on a large conductive film [27].
In this work, we present a pressure sensing methodology

for localization of point pressures on a monolithic, soft
capacitive sensor (Figure 1) by interrogating the sensor at
multiple frequencies to modulate the effective length of the
capacitive sensor “seen” by the measurement system. Using
the resistance and capacitance values of a physical sensor
prototype, we developed an analytical model for the 1D
representation of the capacitive sensor. Using this model, we
calculated the frequency response of the sensor at different
effective sensor lengths to find their corresponding cutoff
frequencies. We then used the calculated cutoff frequencies
as the interrogation frequencies in experimental tests. Exper-
iments were performed by pressing at various locations on
a 1D sensor strip and a 2D sensor sheet wherein the series
resistance (Rs) and parallel capacitance (Cp) of the sensor
were measured using an LCR meter at the interrogation
frequencies. Because the sensors are monolithic, with no
pre-determined measurement locations, we discretized the
sensors into different sized pixels to attain different levels of
spatial resolution. We then input the Rs and Cp values into a
multi-class kernel support vector machine (KSVM) to create
a classification model for localizing the point pressures.
Through evaluation of the SVM using a confusion matrix,
we found that we achieved between 90-100% accuracy in
predicting the location of the applied pressure.

The major contributions of this work are: 1) fabrication
of a monolithic soft capacitive foam skin for measuring
distributed pressure locations, 2) a method to localize applied
pressure by leveraging the effect of interrogating the capac-
itor at different frequencies, 3) demonstration of a reduction
in the number of interfaces to one for a 1 × n and two for

an n × n sensor skin while maintaining high localization
accuracy.

II. PHYSICAL EMBODIMENT

The sensors were fabricated as a large, parallel plate
capacitor using a silicone and expanded graphite composite
for the conductive electrodes, and silicone foam for the
dielectric layer. The two components were made separately,
and then glued together using a thin layer of silicone. As
pressure is applied to this deformable capacitor, the thickness
of the dielectric layer decreases, resulting in an increase in
capacitance.

The conductive composite material was fabricated in a thin
film using a rod-coating method as described in [28]. In this
work, we modified the graphite loading to increase the sheet
resistance from 1 kΩ.� to 50 kΩ.�, reducing the sensitivity
of the sensor to electromagnetic noise and decreasing the
cutoff frequency. By using a conductive composite material,
it is possible to modify the sheet resistance of the capacitor’s
electrodes to better accommodate the interrogation frequency
capabilities of the LCR measurement system, or vice versa.

The silicone foam was fabricated by mixing silicone
elastomer (DragonSkin 10 Slow, Smooth-On) with various
sizes of sugar spheres (Suglets, Colorcon) to create a very
soft, open-cell foam. We mixed 40 g silicone with 120 g
of sugar spheres with diameters between 500-1700 µm, and
then pressed the mixture into a 4 mm deep frame to form
a large, thick sheet. After the silicone cured, the sheet was
submerged in 80 ◦C water for 6 hours to cause the sugar
to dissolve out of the foam, changing the water every hour.
After allowing the water to evaporate from the pores, the
foam sheet was adhered on both sides to the conductive



composite film using a thin silicone glue layer. The final area
of the capacitive sensor was cut manually using a precision
knife.

In addition to the customizability of the electrode sheet
resistance, the unit capacitance of the sensor sheet can be
modified by changing the thickness of the silicone dielectric
foam. Furthermore, the stiffness of the foam can be tuned
by changing the ratio of sugar spheres to silicone, or by
choosing silicones of different stiffnesses.

III. ANALYTICAL MODEL

The sensor is modeled as a network of coupled resistances
and capacitances spread across the sensor plane [29]. For
our application, our goal was to locate the pressure point
that is effectively changing the overall sensor capacitance.
The model was developed by dividing the sensor into in-
finitesimally small 1-dimensional resistive and capacitive
components (Figure 2(a)) spread over the length of sensor
(Figure 2(b)). The voltage and the current equations for mod-
eling the sensor can then be derived from the Telegrapher’s
equations on an electrical transmission line [29] as follows:

∂V (x, t)

∂x
= −(R+ jωL)I(x, t) = −RI(x, t) (1)

∂I(x, t)

∂x
= −(G+ jωC)V (x, t) = −jωCV (x, t) (2)

where, x is the distance from the voltage application point
and R, L, C, and G are the characteristic values for line
components per unit length. In the case of our sensor, we
have a negligible inductance(L ≈ 0) and trans-conductance
(G ≈ 0) (Figure 2(a)). Combining Eq. 1 and Eq. 2, we obtain
the full form of the equations as:

∂2V (x, t)

∂x2
= γ2V (x, t);

∂2I(x, t)

∂x2
= γ2I(x, t) (3)

where, the propagation constant, γ = α+ jβ =
√
jωRC.

The sensor with length l can be divided into n virtual sen-
sor pixels, each represented as an RC couple (Figure 2(b)). In
order to distinguish the pressing of each individual pixel we
need at least n−1 interrogation frequencies. We chose the in-
terrogation frequencies ({f1, ..fi, ..fn}) to be the frequencies
at which the traveling voltage wave at distances xi = il/n
for i ∈ 1 : n (i.e., the distance between the interface and the
“end” of each pixel) is attenuated to half power.

The attenuation factor, α, for the traveling voltage wave
is:

α(f) = e(−Re(γ)x) = e(−
√
πRCfx) (4)

Hence, the attenuation functions for each pixel end point
i in an 1× n pixel sensor are:

αi(f) = e(−Re(γ)xi) = e(−
√
πRCfxi) ∀i ∈ 1 : n (5)

At half power attenuation, αi = 1/
√

2, and thus the
interrogation frequencies can be calculated as:

fi =
(ln αi(f))2

πRCx2i
=

0.0382

RCx2i
for i ∈ 1 : n (6)

The interrogation frequencies fi were obtained for our
1D sensor prototype (Figure 2(a)), with dimensions 100mm
× 20mm, series resistance of 50kΩ/mm and capacitance
of 108fF/mm. The plots of αi(f) for the 1x3, 1x4 and
1x5 pixel sensor networks are shown in Figure 2(c). The
interrogation frequencies corresponding to where αi = 1/

√
2

were used in the following experimental section.

IV. EXPERIMENTAL RESULTS

A. Experimental Methods

We performed a series of experiments to evaluate the
proposed method for localizing point pressures. Six total
configurations were tested: 1 × n sensor strip and n × n
sensor skin, and by discretization the full length l into
3, 4, and 5 (virtual) pixels. In each test, we applied a 2
mm displacement to each pixel to double the capacitance
of each pressed region. We then performed a frequency
measurements at all fi for 1 × n (∀ n ∈ 3 : 5) pixel
sensor array while recording the Rs and Cp values using an
LCR meter (Hioki IM3253). Six repetitions of the frequency
sweep for each pixel were obtained to form a feature-rich
dataset. We then input these datasets (fi, Rs(fi), Cp(fi)∀fi)
into a multi-class kernel support vector machine (KSVM) to
generate a model to classify which pixel (1×n sensor strip)
or pixel column (n× n sensor skin reduced to 1× n sensor
strip) was pressed.

B. K-SVM Classification

Support vectors machines are widely used in learning-
based classification to divide the dataset into separate classes.
While standard SVMs are designed for linear classification
between binary classes using a hyper-plane passing through
maximal margin of separation between the two classes [30],
we require n-class classification for a 1xn pixelated matrix.
Furthermore, the non-linearity of Rs and Cp as a function
of frequency (Figure 2(c)) demands a non-linear classifier
model. Thus, we employed a multi-class K-SVM classifica-
tion method for the pixel localization [31] using the error-
correcting output codes (ecoc) model in the Matlab Statistics
and Machine Learning Toolbox (Mathworks). For each class
(pressed pixel, i), the training data consisted of the Rs and
Cp values measured in the interrogation frequency sweep.

The SVM’s classification performance was assessed using
a k-fold cross-validation model applied on the training data
that randomly partitions the data into k sets where k − 1
sets was used to train the model and the remaining set was
used for cross-validation of the model. The accuracy of the
model was reported as a confusion matrix, where the model’s
predicted pixel (Output Class) was compared against the true
pixel (Target Class).

C. 1× n Sensor Strip

We first performed the experiments on a sensor strip that
was discretized to form 1x3, 1x4, and 1x5 pixel arrays
(Figure 3, top row). The data collected during these ex-
periments are shown in Figure 3, middle row. As reported
in the analytical model, at lower frequencies, the measured



Fig. 3. Single dimensional 1×n sensor strip experiments. (Top row) Photos of the same 1×n sensor with differently sized pressure applicators to create
1x3, 1x4, and 1x5 pixel arrays, from left to right. (Middle row) Plots of capacitance over a frequency sweep while different pixels are pressed. (Bottom
row) Confusion matrices used to evaluate the efficacy of the support vector machine in classifying each pixel press. An extra class (0) representing “No
pixel pressed” in 1x3 confusion matrix shows that the model can detect when a pixel is actually pressed.

capacitance was found to be the same, regardless of which
pixel is pressed. As the frequency increases however, we
begin to see differentiation in the capacitance depending on
which pixel was pressed. When the first pixel is pressed,
a larger capacitance (relative to an un-pressed sensor) is
“seen” across all interrogation frequencies. However, when
a more distant pixel i is pressed, at frequencies above the
cutoff frequency fi, the effective length of the capacitor has
shortened behind the pixel such that the pressed pixel is not
“seen”.

The multi-class KSVM showed nearly perfect performance
in classifying which pixels were pressed. The confusion ma-
trices (Figure 3 (bottom row)) show an overall classification
percentage of 100 % for the 1x3 and 1x4 tests, and 96.7 % for
the 1x5 test. In the 1x5 test, the error was in misclassifying
the 4th and 5th pixels. This result can be directly observed
in the capacitance vs. frequency plot for the 1x5 case which
shows prominent overlapping between the curves of the two
most distal pixels.

D. n× n Sensor Skin

We expanded upon the 1 × n experiments to n × n
sensor sheets discretized into 3x3, 4x4, and 5x5 pixel arrays

(Figure 4). Our goal in this study was to correctly identify the
column j in which a pixel (i, j) was pressed, when probing
from the y-axis. From extension of the 1D analytical model
to 2D, the cutoff frequencies were calculated to be identical
to the 1D case. However, we found experimentally that the
cutoff frequencies (i.e. where there were maximal differences
in measured Cp and Rs depending on which column’s pixel
was pressed) were in fact five times higher, ranging from
1kHz to 200kHz. We therefore interrogated the sensor at
at 20 frequencies logarithmically spaced between 1kHz and
200kHz to create an even more feature-rich dataset with
which to build the classification model.

The results for training and prediction for 1xnth column
classification are presented in Figure 4(c). It is important to
note that the 2D classification results have n times lower sen-
sitivity as 1D example. Use of 20 interrogation frequencies
and feature extraction from both resistance and capacitance
change of the sensor sheet improved the classification from
≈ 60% using 10 frequencies to >90% for the 3x3 and 4x4
matrices. As the pixel size reduces, the change in capac-
itance from pressing a pixel relative to the overall sensor
capacitance decreases. The reduction in sensitivity results



Fig. 4. (a) Photo of the 2D sensor sheet with a pressure applicator for the 5x5 pixel discretization. The foil protruding under the wood frame along the
left and bottom edges was used to interface the LCR meter to the sensor electrodes. The index nomenclature is overlaid on top. (b) Frequency responses
of Rs and Cp measured in the 3x3 matrix experiments. (c) Confusion matrices for the 3x3, 4x4, and 5x5 sensor configurations, respectively, after training
using a multi-class support vector machine. An extra class (0) representing “No pixel pressed” was added solely to the 3x3 classification.

in a lower classification accuracy wherein the misclassified
pixels are predicted to be in one of the adjacent columns
(Figure 4(c) 5x5). We observe that the classification accuracy
decreases at pixels furthest away from the interface, where
the sensitivity of the measurement method is lowest. The
performance degradation becomes even more evident as we
increase the resolution beyond the 5x5 matrix, at which
point the limits of the current measurement system are
reached. By superimposing measurements and classifications
from interrogating at both the x- and y-axes, an improved
classification of pixel location can be obtained.

V. CONCLUSION AND FUTURE WORK

We have presented a method to localize applied pressure
on a soft 2D monolithic capacitive sensor. In comparison
to a sensing region composed of n × n discrete sensors,
the proposed approach greatly simplifies fabrication and
drastically reduces the number of interfaces from n2 to just
two, facilitating integration of surface pressure measurement
in soft robots. We demonstrated that pressures could be
localized by interrogating the sensor at multiple frequencies
to record the Cp and Rs values, and inputting those mea-
surements into a trained kernel support vector machine to
report the location of pressure in both 1×n and n×n pixel

arrays. We used a KSVM to perform non-linear, multi-class
classification that yielded excellent results in both the 1× n
and n× n pixel arrays.

From this preliminary study, there are many directions in
which to take this work: improving localization accuracy in
the 2D case, investigating the spatial resolution and load
sensitivity of the system, further testing using differently
shaped objects and non-flat surfaces, and measurement of
multiple contact points by interrogating from more than
two interface locations. To improve the localization accuracy
within a 2D array, we found preliminary results that showed
that the KSVM could also be used to predict the pressure
location in rows (i) orthogonal to the interface (y-axis), in
addition to columns (j). While the accuracy of this model
expectedly is lower, the results nonetheless demonstrated
that there is further information encoded in the Rs and
Cp values gathered from a single interface beyond just the
localization within columns parallel to the interface. Thus,
we hypothesize that we can utilize the two sets of Rs and
Cp values gathered by interrogating from the two axes to
train four KSVMs and then convolve the KSVM models to
improve localization accuracy. Furthermore, we would like
to investigate the sensitivity of the system in terms of the
spatial resolution. As we found in our 2D experiments, the



sensitivity of the pressure sensor reduces as we travel away
from the interface. A sensitivity and information theoretic
analysis [14] would provide information on the pixel size
limits, based upon the magnitude of the smallest measurable
capacitance change, as a function of distance from the
interface.

In terms of implementation on a soft robotic system, there
remain several open questions in using this system. These
opportunities include measurement of continuous values of
pressure, localization of multiple contact points, identifica-
tion of pressure application with non-square shapes, imple-
mentation of the sensor on curved surfaces, and investigating
the effect of stretch on the system. The methods that we
have presented in utilizing a soft, capacitive sensor skin to
localize pressure application leverages the unique properties
of a large-area, deformable capacitor while providing the
benefits of monolithic fabrication, more efficient interfac-
ing, and a more physically robust device. This approach
enables applications beyond soft roboticists to more easily
determine interactions between soft robot systems and their
surroundings, by distributing contact pressure sensing across
any surface.
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